Some years from the Indian Physics Olympiad do not have given solutions. This document
serves to provide solutions for the 2011 Indian Physics Olympiad.
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1

Introduction

This project arose from a separate solutions project on artofproblemsolving.com where many others
have been contributing solutions to past INPhO problems that have no solutions. Thanks to Kushal
Thaman for providing extra solutions for me to crosscheck with. Here are my general views of the
problems:

Problem 1: Interesting problem on electromagnetism - namely the motion of electrons from
a current-carrying wire. Difficulty 2.5 on POTD scale.

Problem 2: Pretty standard optics problem with all very managable parts. Difficulty 2 on
POTD scale.

Problem 3: Very standard problem on the Carnot cycle that several textbooks would have.
Difficulty 1 on POTD scale.

Problem 4: Pretty interesting problem on modern physics. Combines several different
concepts. Difficulty 3 on POTD scale.

Problem 5: Very nice problem on conductivity, namely the last 2 parts. The first couple
parts are standard and can be found in various textbooks. Difficulty 3 on POTD scale.

Problem 6: Very nice problem that tests both calculus, essential mechanics concepts, and
approximations. Difficulty 3 on POTD scale.

Problem 7: A basic graphing problem that does not have much physics involved, if at all.
Difficulty 1 on POTD scale.
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2 Problem 1

(a)

First, note that the force due to a magnetic field is given by
F = qv x B. (1)

Substituting the electric charge of an electron and splitting the components of ¥ into vi + v}

gives us
F = —e(vgi 4+ vyj) X B. (2)

Note that the magnetic field points outwards by righthand rule and by Ampere”s Law is

B = % where x is the distance from the wire and the electron. Substituting this result and

using the properties of vectors tells us

o A N wol ~  eupl , - A
F=_ T Laby e —vz]). 3
e(vzt + vyJ) X Sy S (vyt — vz]) (3)

This then tells us the components of force in both x and y directions is

epol
= g vy, and F, = —

epol
. 4
2rx Ve 4)

Now that we have found the components of force, we can divide by the mass m of the electron
to find the acceleration.
epol epol dvy  eupl

= . e Ay = —V
onx Y 2rma”

Uy- (5)

Vg =
dzx 2rmax

Noting that v, = /v —v2 (by Pythagorean theorem) we substitute to get the differential
equation

dvy euol euwol (% dx

Vg )
_ /. 2 2 z _
Vp—— = Vg — v = / —dv, = — —. (6)
dzx 2Tmax v /vg — 22 2mm Jo x

To solve this integral, we first use a u-substitution

1
u=vi —v: = du= —2v,dv, = dv, = —ﬁdu (7)
x

which tells us that
epol [* dx

1 1
_2/\/ﬂdu__27rm T ()

Applying power rule and substituting back u = v — v2 gives us

Vg
d-02| =g m@ )
Evaluating the bounds
eol . x euol .~ x\?
v%—v§:2iillng = Ux:\/vg—<2/:;nlna> (10)
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(c) When the electron turns back, its z-velocity must become zero. This means that all we do is
set our last equation to be zero and solve for z. In other words,

I 2
Ozvx:\/v8—<§i(;nlnz> . (11)

Simplifying further tells us

1 2
vy = Hot 1y 2 = a- exp( Wva) . (12)
2rm  a euol
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3 Problem 2

(a)

Define S1 P and So P as a geometric length and 1 and x2 to be the optical path length. We
see that
x1 = w(S1P). (13)

The geometric path length of x2 will be defined as So P — t, and will be superimposed with
the optical path length of the glass. In other words, we have that

2o = W (SoP —tg) + pgty- (14)
The difference in the path lengths will then be
Ax =21 — 290 = MI(SIP) — ,UJZ(SQP — tg) + Mgtg = ,u,l(Slp — SQP) — (Ng — Nl)tg- (15)

Note that S1P — SoP = dsin@ where § = arctan(y/D) ~ arcsin(y/D) (because 6 is very
small) which means that

. payd
Az = pmdsing — (ug — )ty = =5~ — (g — m)ty. (16)
The maximum will be when Az = 0. Substituting p; = 2.50 —0.25¢ and py = 1.50 will get us

d
0= (2.50 — 0.25t)% — (0.25¢ — 15)t, (17)

then, substituting values of d, D and ¢, gives us the final equation of

(0.25t — 1.5) x 3.60 x 107> m = (2.50 — 0.25¢) x 2.00 x 1073 m. (18)
When ¢t < 5s, we find that
—4
y:loitx1.8x10*2m (19)

and when t > 5, we find that ¢ must be

t=23.6x10"% m. (20)
The time when the central maximum will be at O is when y = 0. In other words

t—4
x1.8x10?m = 0=t—4 = t=4s. (21)

T

All we do is simply evaluate the derivative of y. Note that

L dy (10— t)— 10(t —4)
eTar T (10— 1)2

x1.8x107?m (22)

by quotient rule. We know the time at the central maxima from part (c), therefore, by
substituting ¢t = 4 we get that

1
v=gx18x 1072m=3.0x 1073 ms™ 1, (23)
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(e) At point O, Az can be written as
Az = (1 — pg)ty (24)
since y = 0 at point O. We can equate this maxima to nA at point O to get
nA = (= pg)ty. (25)
Substituting the time equivalents of 1; and 4 tells us that
n x 60004 = (1.5 — 0.25t) x 3.6 x 107°. (26)
Differentiating this result tells us that
An x 60004 = —0.25At x 3.6 x 107° (27)
we can substitute An =1 to find

At =6.7x107%s. (28)
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4 Problem 3

(a)

The temperature at point 1 is told to be T = a1y and as no process has undergone, the
volume remains invariant as V4, = V. At point 1, the pressure is given easily by the ideal gas

law
RaT

Vo
The process from point 1 to point 2 is an isothermal process, so Ts remains as a7y. The

minimum volume is at point 3 as nVj and the ratio of maximum to minimum temperatures
is a. This allows us to write

Tu\  (Va\"! (V7! W
(TL) N (VL> T (V2> = W= 6-p (30)

By the ideal gas law, the pressure P» is then given as

PVo = R(aT) = P, =

(29)

RTya /71

v (31)

2

We can make a table to represent the set of all values {P,V,T'}:

_ RaTp _ RTo/0-D _ RTp _ RTy
Pl 7 P2 _ nVy P3 — nV P4 - Voal/(1*”0
Vi=Wo  Va=_fty [Va=nly Vai=a/U7W

T1 = OZTO T2 = OéTo T3 = TO T4 = TO

Process 1-2 (Isothermal):

Vs n
ng = ROéTo In vl = RaTo In (W) .

Process 2-3 (Adiabatic):

Was = —AU = —Cy (Ty — Ty) = —

t 1To(1 —a)

Process 3-4 (Isothermal):

1/y-1
Was — RTyIn Y2 — RTyIn (“ )
Vi n

Process 4-1 (Adiabatic):

Wi = —AU = ~Cy(Ty - Th) = —

~ 1T0(Oé — 1)

From the first law of thermodynamics, the total heat will just be the total work done through-
out processes 1-4 or in other words

Q = RTy(a — 1)In (O;H)
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(a)

5 Problem 4
We have two equations. The first one is the force of attraction between two electrons
2 2 2
- e 1 B e r+p ) muv
4meg (7"2 + 7"3) 4meg < 73 r (32)

and the other equation is conservation of angular momentum

nh

mur =nh — v = . (33)
mr
Substituting v into the centripetal force equation gives us
e? (T + ,3) B n’h? (34)
dmeg \ 13 - omr3
we then find that 5o
dmegn“h
Py = 0 5 — B =n2ag — B. (35)
me

We consider the kinetic and potential energies of this new modified system. With equation
(5), the kinetic energy is given as

Kzlmv2 L e (1+ 6). (36)

2 "2547150 r o2

Note that F' = —dU/dr, which means the potential energy is given as

e? 1 I}
U=y (5 20): (37)

We can now add these two together to get F,:

ez /1 g 1 B e? 1
S (T S P (39)
dreg \2r 202 r 272 8meg nZag — B
We find AFE by using

AE = By — B (39)

by substituting n = 1 and n = 2. This therefore gives,

e? 1 1

AFE = — . 40
8meg (ao—ﬁ 4GO_B> ( )

Using the fact that (1 + x)" ~ 1 + nx, we can rewrite our equation as

AE=_© < ! ! > (41)

~ 8meoap \1 - BJag 4 — BJag
e? g1 B
~ 1+ ——--- 42
8mepag ( + ag 4 16a0> (42)
e? 3 158
~ 2422 43
47T€0a0 (4 + 16@0) ( )
~ 11.5€V. (44)
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(a)

6 Problem 5
The Lorentz force tells us that
F=q(E+vxB). (45)
There is also a retarding force of F;; = mt//7. This tells us that
Fem®_ cFroxp - (46)
=m— = —e U - —.
dt T

When 7 — oo, the retarding force becomes approximately zero. Since there is no electric
field, our total force is then just e’ x B. We equate this to the centripetal force to find that

M B = Y =w=""=2102rad - s\ (47)

The electric force that acts on each electron is eF and this acts for a time ¢ meaning the
momentum increment is just e£t. Suppose the velocity after an electron collides is ;. The
average momentum of all electrons is [2]

m@zz%E:Omﬁ+eEU. (48)

i

The first sum goes to 0, so our average velocity is given as

ebt
v=—"-. 49
p== (49)
The current density is then
Et Neé*t
J=Net =2, (50)
m m
As J = oFE, we can then substitute t for 7 to get
Ne2r
= i 51
o=— (51)

We can consider the movement of electrons in the z —y plane. A charged particle experiences
two different contributions to its acceleration:

i=" 1 L5 B) (52)

By creating a differential equation in the z and y directions, we can guess a solution of
vy = C'sin(wt + ¢) to get
vy = vp(cos(wet) — 1) (53)
vy = v sin(wet) (54)
We can average the in a single interval ¢ between two collisions:

Vo t

Uy = — [ wvg(t)dt (55)
t Jo
= :j—jt(l — coswt). (56)
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Next is to integrate over the probability distribution of electrons. This requires the assumption
that mean free time of collisions does not depend on prior collisions [1] . In a thermal analogy,
one would expect the opposite, because the faster a particle collides, the sooner the time of
collision would be. So, we need to assume that Veectrons <€ Uthermal and assume a basic
exponential probability distribution

1 t

p(t) = p exp - (57)

This probability distribution works because the expected time is just the mean free time 7.

Using this probability distribution now tells us that

o= [T (58)
— ;COT </ /pr cos(we )dt) (59)
- Lj}COT ( 1+ 72w2> (90
ey (61)

As conductivity is proportional to velocity, this means that

o0TWe
=_——° 62
Tay 14 w272 (62)
Similar calculations can be done for oy, with v, () to derive
- (63)

g =
W14 wir?

All other conductivity terms go to 0 because the electric and magnetic fields give no contri-
bution.

(e) From the answer key, drawing either (a), (b), or (c) is acceptable.

L lm/let B

—m/et

mlet B N

m/et B

() (c)

'You would have to integrate | OOC tp(t)dt.
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7 Problem 6

(a) First, note that block C will have a velocity of zero since the force carried by the spring is
non-impulsive. Elastic collision laws have to be used on blocks B and C. Take the reference
frame of the center of mass and then convert back to the lab frame to find the resultant
velocities. This shows:

V] = —vo + 2vem (64)
vh = —vg + 2vcM (65)
where
MUO
VCM — M+ m. (66)
Therefore,
M—-m 1—m/M 1—7
AT am ™ 1 m/M T 114" (67)
and
’U, . 2M v — 2’00 (68)
2T M+m Y 144

(b) A spring force F¢, corresponding to a displacement z¢ is directed rightwards to block C.
A spring force Fg, corresponding to a displacement xp must be directed leftwards. Apart
from this, there are normal and gravitational forces directed on both blocks in the vertical
direction which cancel out.

s w__> 2
- 8 14— =

The equations of motion can be expressed as two coupled differential equations
mip=—Fp=—k(L— (xc—2xpB)) (69)
mic = Fo=k(L — (x¢c — xR)) (70)
(c) We are given the general equations for x4 and zp are

xp = at + [sin(wt) (71)
zc = L+ at — Bsin(wt) (72)

Taking successive derivatives implies

&p = a + Pw cos(wt) (73)
To = a— pwcos(wt) (74)
ip = —pBuw?sin(wt) (75)
ic = fw? sin(wt) (76)
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Equating vp to g gives the equation

2’00

a + fw cos(wt) s (77)
At t = 0, this equation simplifies to
2’00
+ Bw = 78
o+ fur = 1o (78)

Similarly, for vc, we can equate it to £¢. From the previous part, we know that at ¢ = 0,
vo = 0, so:

a—fPw=0 = a=pw. (79)
Plugging back into equation (7) shows
Vo Vo
I Bl +7) (80)
Now using our force equation, we have
k _
o (Z‘B rc) —ip (81)
m
k
——(2Bsin(wt)) = —Buw? sin(wt) (82)
m
2k
=4/ =. 83
w=y/> (33)
The coordinate of block B will be described as:
V0 () . Vo I )
g = t+ sin(wt) = t+ —sin(wt) | . 84
R T R 1+7( oS 54
The condition for the second collision is
xp(t) = vat (85)
or ) )
Vo . -
t—l—smwt): vot. 86
1+7( o Snwt) 1+7 0 (86)

This is hard to solve, but it can be approximately solved by graphing the functions as shown
below.

‘ 37/2

From here, we have that
sinwt

= —. (87)

Note the max value of —sin(wt) = 1 has its first maximum at wt = 2F. Solving this graphi-
cally, we see that for a solution to exist, 7 < Ymax. Therefore,

wt

3 2
1Sl = v — <1 = S —. 88
ywt < 73 TR 3, (88)
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8 Problem 7

(a) From the answer key: We can define D = m2w?* — 4o and D’ = m?w* — %0«5.

u(x) u(x)
0o x X+
0 x OI\/\X
0
(a) D<0, D’<0 (b) D>0, D’<0
u(x) u(x)
X4
0~ v X (- x
0 x_ x4 0 pat
(¢) D>0, D’>0 (d) D>0, D’=0

Here 4 = (mw? £ D)/2a and v+ = 3(mw? £ v D')/4a
(b) The graph looks like below

u(x)

0.4

—0.07

As the total energy is 0 and kinetic energy can only be positive, any areas where u(z) > 0
is strictly forbidden. This includes x < 0 and 0.6 < z < 2.4. For 0 < x < 0.6, the motion
is bounded on the left. Furthermore, energy increases on either side of the equilibrium point
x = 0.3 which indicates that motion would be periodic in this area. For x € [2.4,00), the
motion is partially bounded but not periodic because there exists no minimum.
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