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Abstract

Some years from the Indian Physics Olympiad do not have given solutions. This document
serves to provide solutions for the 2011 Indian Physics Olympiad.
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1 Introduction

This project arose from a separate solutions project on artofproblemsolving.com where many others
have been contributing solutions to past INPhO problems that have no solutions. Thanks to Kushal
Thaman for providing extra solutions for me to crosscheck with. Here are my general views of the
problems:

• Problem 1: Interesting problem on electromagnetism - namely the motion of electrons from
a current-carrying wire. Difficulty 2.5 on POTD scale.

• Problem 2: Pretty standard optics problem with all very managable parts. Difficulty 2 on
POTD scale.

• Problem 3: Very standard problem on the Carnot cycle that several textbooks would have.
Difficulty 1 on POTD scale.

• Problem 4: Pretty interesting problem on modern physics. Combines several different
concepts. Difficulty 3 on POTD scale.

• Problem 5: Very nice problem on conductivity, namely the last 2 parts. The first couple
parts are standard and can be found in various textbooks. Difficulty 3 on POTD scale.

• Problem 6: Very nice problem that tests both calculus, essential mechanics concepts, and
approximations. Difficulty 3 on POTD scale.

• Problem 7: A basic graphing problem that does not have much physics involved, if at all.
Difficulty 1 on POTD scale.
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2 Problem 1

(a) First, note that the force due to a magnetic field is given by

F⃗ = qv⃗ × B⃗. (1)

Substituting the electric charge of an electron and splitting the components of v⃗ into vî + vĵ
gives us

F⃗ = −e(vxî + vy ĵ) × B⃗. (2)

Note that the magnetic field points outwards by righthand rule and by Ampere”s Law is
B = µ0I

2πx where x is the distance from the wire and the electron. Substituting this result and
using the properties of vectors tells us

F⃗ = −e(vxî + vy ĵ) × µ0I

2πx
k̂ = eµ0I

2πx
(vy î − vxĵ). (3)

This then tells us the components of force in both x and y directions is

Fx = eµ0I

2πx
vy, and Fy = −eµ0I

2πx
vx. (4)

(b) Now that we have found the components of force, we can divide by the mass m of the electron
to find the acceleration.

Fx = eµ0I

2πx
vy =⇒ ax = eµ0I

2πmx
vy =⇒ vx

dvx

dx
= eµ0I

2πmx
vy. (5)

Noting that vy =
√

v2
0 − v2

x (by Pythagorean theorem) we substitute to get the differential
equation

vx
dvx

dx
= eµ0I

2πmx

√
v2

0 − v2
x =⇒

∫ vx

v0

vx√
v2

0 − v2
x

dvx = −eµ0I

2πm

∫ x

a

dx

x
. (6)

To solve this integral, we first use a u-substitution

u = v2
0 − v2

x =⇒ du = −2vxdvx =⇒ dvx = − 1
2vx

du (7)

which tells us that
− 1

2

∫ 1√
u

du = −eµ0I

2πm

∫ x

a

dx

x
. (8)

Applying power rule and substituting back u = v2
0 − v2

x gives us

−
√

v2
0 − v2

x

∣∣∣∣vx

v0

= −eµ0I

2πm
ln(x)|xa . (9)

Evaluating the bounds

√
v2

0 − v2
x = eµ0I

2πm
ln x

a
=⇒ vx =

√
v2

0 −
(

eµ0I

2πm
ln x

a

)2
(10)
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(c) When the electron turns back, its x-velocity must become zero. This means that all we do is
set our last equation to be zero and solve for x. In other words,

0 = vx =

√
v2

0 −
(

eµ0I

2πm
ln x

a

)2
. (11)

Simplifying further tells us

v0 = eµ0I

2πm
ln x

a
=⇒ a · exp

(2πmv0
eµ0I

)
. (12)
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3 Problem 2

(a) Define S1P and S2P as a geometric length and x1 and x2 to be the optical path length. We
see that

x1 = µl(S1P ). (13)

The geometric path length of x2 will be defined as S2P − tg and will be superimposed with
the optical path length of the glass. In other words, we have that

x2 = µl(S2P − tg) + µgtg. (14)

The difference in the path lengths will then be

∆x = x1 − x2 = µl(S1P ) − µl(S2P − tg) + µgtg = µl(S1P − S2P ) − (µg − µl)tg. (15)

Note that S1P − S2P = d sin θ where θ = arctan(y/D) ≈ arcsin(y/D) (because θ is very
small) which means that

∆x = µld sin θ − (µg − µl)tg = µlyd

D
− (µg − µl)tg. (16)

(b) The maximum will be when ∆x = 0. Substituting µl = 2.50 − 0.25t and µg = 1.50 will get us

0 = (2.50 − 0.25t)yd

D
− (0.25t − 1.5)tg (17)

then, substituting values of d, D and tg gives us the final equation of

(0.25t − 1.5) × 3.60 × 10−5 m = y(2.50 − 0.25t) × 2.00 × 10−3 m. (18)

When t ≤ 5 s, we find that
y = t − 4

10 − t
× 1.8 × 10−2 m (19)

and when t ≥ 5, we find that t must be

t = 3.6 × 10−2 m. (20)

(c) The time when the central maximum will be at O is when y = 0. In other words

0 = t − 4
10 − t

× 1.8 × 10−2 m =⇒ 0 = t − 4 =⇒ t = 4 s. (21)

(d) All we do is simply evaluate the derivative of y. Note that

vc = dy

dt
= (10 − t) − 10(t − 4)

(10 − t)2 × 1.8 × 10−2 m (22)

by quotient rule. We know the time at the central maxima from part (c), therefore, by
substituting t = 4 we get that

v = 1
6 × 1.8 × 10−2 m = 3.0 × 10−3 ms−1. (23)
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(e) At point O, ∆x can be written as

∆x = (µl − µg)tg (24)

since y = 0 at point O. We can equate this maxima to nλ at point O to get

nλ = (µl − µg)tg. (25)

Substituting the time equivalents of µl and µg tells us that

n × 6000Å = (1.5 − 0.25t) × 3.6 × 10−5. (26)

Differentiating this result tells us that

∆n × 6000Å = −0.25∆t × 3.6 × 10−5 (27)

we can substitute ∆n = 1 to find

∆t = 6.7 × 10−2 s. (28)
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4 Problem 3

(a) The temperature at point 1 is told to be T1 = αT0 and as no process has undergone, the
volume remains invariant as V1 = V0. At point 1, the pressure is given easily by the ideal gas
law

P1V0 = R(αT ) =⇒ P1 = RαT

V0
. (29)

The process from point 1 to point 2 is an isothermal process, so T2 remains as αT0. The
minimum volume is at point 3 as nV0 and the ratio of maximum to minimum temperatures
is α. This allows us to write(

TH

TL

)
=
(

VH

VL

)γ−1
=⇒ α =

(
nV0
V2

)γ−1
=⇒ V0 = nV0

α1/(γ−1) (30)

By the ideal gas law, the pressure P2 is then given as

P2 = RT0αγ/γ−1

nV0
. (31)

We can make a table to represent the set of all values {P, V, T}:

P1 = RαT0
V0

P2 = RT αγ/(γ−1)

nV0
P3 = RT0

nV0
P4 = RT0

V0α1/(1−γ)

V1 = V0 V2 = nV0
α1/(1−γ) V3 = nV0 V4 = α1/(1−γ)V0

T1 = αT0 T2 = αT0 T3 = T0 T4 = T0

(b) Process 1-2 (Isothermal):

W12 = RαT0 ln V2
V1

= RαT0 ln
(

n

α1/γ−1

)
.

Process 2-3 (Adiabatic):

W23 = −∆U = −CV (T2 − T3) = − R

γ − 1T0(1 − α)

Process 3-4 (Isothermal):

W34 = RT0 ln V3
V4

= RT0 ln
(

a1/γ−1

n

)

Process 4-1 (Adiabatic):

W41 = −∆U = −CV (T4 − T1) = − R

γ − 1T0(α − 1)

(c) From the first law of thermodynamics, the total heat will just be the total work done through-
out processes 1-4 or in other words

Q = RT0(α − 1) ln
(

n

α1/γ−1

)
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5 Problem 4

(a) We have two equations. The first one is the force of attraction between two electrons

F⃗ = e2

4πε0

( 1
r2 + β

r3

)
= e2

4πε0

(
r + β

r3

)
= mv2

r
(32)

and the other equation is conservation of angular momentum

mvr = nℏ =⇒ v = nℏ
mr

. (33)

Substituting v into the centripetal force equation gives us

e2

4πε0

(
r + β

r3

)
= n2ℏ2

mr3 (34)

we then find that
rn = 4πε0n2ℏ2

me2 − β = n2a0 − β. (35)

(b) We consider the kinetic and potential energies of this new modified system. With equation
(5), the kinetic energy is given as

K = 1
2mv2

n = 1
2

e2

4πε0

(1
r

+ β

r2

)
. (36)

Note that F = −dU/dr, which means the potential energy is given as

U = − e2

4πε0

(1
r

+ β

2r2

)
. (37)

We can now add these two together to get En:

En = e2

4πε0

( 1
2r

+ β

2r2 − 1
r

− β

2r2

)
= − e2

8πε0

1
n2a0 − β

. (38)

(c) We find ∆E by using
∆E = E2 − E1 (39)

by substituting n = 1 and n = 2. This therefore gives,

∆E = e2

8πε0

( 1
a0 − β

− 1
4a0 − β

)
. (40)

Using the fact that (1 + x)n ≈ 1 + nx, we can rewrite our equation as

∆E = e2

8πε0a0

( 1
1 − β/a0

− 1
4 − β/a0

)
(41)

≈ e2

8πε0a0

(
1 + β

a0
− 1

4 − β

16a0

)
(42)

≈ e2

4πε0a0

(3
4 + 15

16
β

a0

)
(43)

≈ 11.5 eV. (44)
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6 Problem 5

(a) The Lorentz force tells us that
F⃗ = q(E⃗ + v⃗ × B⃗). (45)

There is also a retarding force of Fd = mv⃗/τ . This tells us that

F⃗ = m
dv⃗

dt
= −e(E⃗ + v⃗ × B⃗) − mv⃗

τ
. (46)

(b) When τ → ∞, the retarding force becomes approximately zero. Since there is no electric
field, our total force is then just ev⃗ × B⃗. We equate this to the centripetal force to find that

mv2

r
= evB =⇒ v

r
= ω = eB

m
= 1012 rad · s−1. (47)

(c) The electric force that acts on each electron is eE and this acts for a time t meaning the
momentum increment is just eEt. Suppose the velocity after an electron collides is u⃗i. The
average momentum of all electrons is [2]

mv̄ = 1
N

∑
i

(mui + eEt). (48)

The first sum goes to 0, so our average velocity is given as

v̄ = eEt

m
. (49)

The current density is then

J = Ne
eEt

m
= Ne2t

m
E. (50)

As J = σE, we can then substitute t for τ to get

σ = Ne2τ

m
. (51)

(d) We can consider the movement of electrons in the x−y plane. A charged particle experiences
two different contributions to its acceleration:

a⃗ = qE⃗

m
+ q

m
(v⃗ × B⃗). (52)

By creating a differential equation in the x and y directions, we can guess a solution of
vx = C sin(ωt + ϕ) to get

vx = v0(cos(ωct) − 1) (53)
vy = v0 sin(ωct) (54)

We can average the in a single interval t between two collisions:

v̄x = v0
t

∫ t

0
vx(t)dt (55)

= v0
ωct

(1 − cos ωt). (56)
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Next is to integrate over the probability distribution of electrons. This requires the assumption
that mean free time of collisions does not depend on prior collisions [1] . In a thermal analogy,
one would expect the opposite, because the faster a particle collides, the sooner the time of
collision would be. So, we need to assume that velectrons ≪ vthermal and assume a basic
exponential probability distribution

p(t) = 1
τ

exp t

τ
. (57)

This probability distribution works because the expected time is just the mean free time τ .1
Using this probability distribution now tells us that

v̄x = 1
τ

∫ ∞

0
tp(t)v̄x(t)dt (58)

= v0
ωcτ

(∫ ∞

0
p(t)dt −

∫ ∞

0
p(t) cos(ωct)dt

)
(59)

= v0
ωcτ

(
1 − 1

1 + τ2ω2
c

)
(60)

= v0ωcτ

1 + ω2
c τ2 (61)

As conductivity is proportional to velocity, this means that

σxy = − σ0τωc

1 + ω2
c τ2 . (62)

Similar calculations can be done for σyy with vy(t) to derive

σyy = σ0
1 + ω2

c τ2 (63)

All other conductivity terms go to 0 because the electric and magnetic fields give no contri-
bution.

(e) From the answer key, drawing either (a), (b), or (c) is acceptable.

1You would have to integrate
∫∞

0 tp(t)dt.
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7 Problem 6

(a) First, note that block C will have a velocity of zero since the force carried by the spring is
non-impulsive. Elastic collision laws have to be used on blocks B and C. Take the reference
frame of the center of mass and then convert back to the lab frame to find the resultant
velocities. This shows:

v′
1 = −v0 + 2vCM (64)

v′
2 = −v2 + 2vCM (65)

where
vCM = Mv0

M + m
. (66)

Therefore,
v′

1 = M − m

M + m
v0 = 1 − m/M

1 + m/M
v0 = 1 − γ

1 + γ
v0 (67)

and
v′

2 = 2M

M + m
v0 = 2v0

1 + γ
. (68)

(b) A spring force FC , corresponding to a displacement xC is directed rightwards to block C.
A spring force FB, corresponding to a displacement xB must be directed leftwards. Apart
from this, there are normal and gravitational forces directed on both blocks in the vertical
direction which cancel out.

The equations of motion can be expressed as two coupled differential equations

mẍB = −FB = −k(L − (xC − xB)) (69)
mẍC = FC = k(L − (xC − xB)) (70)

(c) We are given the general equations for xA and xB are

xB = αt + β sin(ωt) (71)
xC = L + αt − β sin(ωt) (72)

Taking successive derivatives implies

ẋB = α + βω cos(ωt) (73)
ẋC = α − βω cos(ωt) (74)
ẍB = −βω2 sin(ωt) (75)
ẍC = βω2 sin(ωt) (76)
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Equating vB to ẋB gives the equation

α + βω cos(ωt) = 2v0
1 + γ

(77)

At t = 0, this equation simplifies to

α + βω = 2v0
1 + γ

(78)

Similarly, for vC , we can equate it to ẋC . From the previous part, we know that at t = 0,
vC = 0, so:

α − βω = 0 =⇒ α = βω. (79)
Plugging back into equation (7) shows

α = v0
1 + γ

, β = v0
β(1 + γ) . (80)

Now using our force equation, we have

−k(xB − xC)
m

= ẍB (81)

− k

m
(2β sin(ωt)) = −βω2 sin(ωt) (82)

ω =
√

2k

m
. (83)

(d) The coordinate of block B will be described as:

xB = v0
1 + γ

t + v0
ω(1 + γ) sin(ωt) = v0

1 + γ

(
t + 1

ω
sin(ωt)

)
. (84)

The condition for the second collision is

xB(t) = vAt (85)

or
v0

1 + γ

(
t + 1

ω
sin(ωt)

)
= 1 − γ

1 + γ
v0t. (86)

This is hard to solve, but it can be approximately solved by graphing the functions as shown
below.

3π/2

−γ

From here, we have that
sin ωt

ωt
= −γ. (87)

Note the max value of − sin(ωt) = 1 has its first maximum at ωt = 3π
2 . Solving this graphi-

cally, we see that for a solution to exist, γ ≤ γmax. Therefore,

γωt ⪅ 1 =⇒ γ · 3π

2 < 1 =⇒ γ ⪅
2

3π
. (88)
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8 Problem 7

(a) From the answer key: We can define D = m2ω4 − 4αδ and D′ = m2ω4 − 16
3 αδ.

Here x± = (mω2 ± D)/2α and x± = 3(mω2 ±
√

D′)/4α

(b) The graph looks like below

As the total energy is 0 and kinetic energy can only be positive, any areas where u(x) > 0
is strictly forbidden. This includes x < 0 and 0.6 < x < 2.4. For 0 < x < 0.6, the motion
is bounded on the left. Furthermore, energy increases on either side of the equilibrium point
x = 0.3 which indicates that motion would be periodic in this area. For x ∈ [2.4, ∞), the
motion is partially bounded but not periodic because there exists no minimum.
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